
FedMONN: Meta Operation Neural Network for Secure Federated Aggregation

Dan Meng, Hongyu Li, Fan Zhu, Xiaolin Li

AI Institute, Tongdun Technology
{dan.meng, hongyu.li, fan.zhu, xiaolin.li}@tongdun.net

Abstract—Federated learning enables collaborative machine
learning among multiple independent participants while pre-
serving data privacy of each participant through model ag-
gregation during training. However, model aggregation still
faces potential risks that are associated with indirect leak-
age, such as parameters. In this paper, we first propose an
algorithm called Meta Operation Neural Network (MONN) to
perform basic arithmetic operations on encrypted data and
generate operation results in a plaintext way. MONN is actually
a general neural network composed of an encoder and a
meta operation decoder, where both the encryption and meta
decryption are lossless. MONN can be applied to federated
learning for secure model aggregation. In this way, data privacy
can be well preserved not only from malicious attackers but
also untrustworthy servers. Experimental results reveal the
following three key properties: 1) The proposed MONN based
federated aggregation method (denoted as FedMONN) can
reach satisfactory performance comparable with non-federated
counterparts; 2) FedMONN is more secure than the classic
federated averaging and one-time pad aggregation, even the
server is not a trustable third party; 3) FedMONN is much
efficient than the federated aggregation based on the Paillier
homomorphic encryption technique.

Keywords-federated learning, federated aggregation, collabo-
rative machine learning, data privacy

I. INTRODUCTION

Recently, federated learning [1] has become a hot topic

in the research of data privacy protection [2]–[4]. Federated

learning is proposed for multi-party, and privacy-preserving

machine learning. In federated learning, the participants

compute an updated model based on their local data and post

gradient updates to the server. The server then aggregates

these updates (e.g. by averaging) to construct an improved

global model. However, the gradient updates may reveal

private information during federated aggregation [5]–[8],

which still violates the principle of General Data Protection

Regulation (GDPR)1.

Many research efforts have been devoted to seek for

more secure federated aggregation methods and technologies

in federate learning. A natural approach to preventing

information leakage is adding artificial noises, known as

differencial privacy (DP) [9]. Existing works on DP based

federated aggregation include [6], [10]. In [6], federated DP

aggregation algorithm (denoted as FedDP) was proposed to

preserve participants’ side privacy, and local parameters in

1https://www.eugdpr.org

each participants were perturbed by adding noises before

uploading to the server for federated aggregation. Although

DP based federated aggregation is a feasible solution, it

has to make the trade-off between privacy level and model

accuracy.

Except for DP based federated aggregation methods, the

other encryption technologies (i.e. homomorphic encryption

(HE), one-time pad (OTP) [11], and encrypted neural network

also become a popular research topic. For example, [12]

pointed out that federated learning ensures the confidentiality

of data by involving HE technology during parameters

transmission and federated aggregation process, while Paillier

HE [13] (denoted as FedHE) has mostly been used. However,

HE based federated aggregation methods are time consuming

even using Paillier HE, not to mention using fully HE. [14]

proposed an encrypted neural network (ENN) to solve the

privacy protection problem for gradient updates transmission

and aggregation in federated learning. Nevertheless, ENN

is designed only for the averaging operation and is hard

to extend to other basic operations or complex operation

combinations, because each operation requires a new ENN

to be trained from scratch.

In order to provide possibilities of a more secure and

efficient federated aggregation method, in this paper, we

propose MONN to perform meta operation on encrypted data

and generate the result in a plaintext way simultaneously. In

the MONN based federated aggregation algorithm (denoted

as FedMONN), each participant uses the public encoder to

generate encrypted vectors of local model weights respec-

tively. Once the encrypted vectors are transmitted to the

server, a meta operation decoding sub-network deployed on

the server is responsible to recover the aggregated encrypted

vectors. In this way, the original data will never appear

both during transmission and aggregation. As a result, the

proposed FedMONN can calculate properly without privacy

leaking or directly being exposed to the server.

Our major contributions are summarized as follows: 1)

A Meta Operation Neural Network is proposed that can

perform meta operations on encrypted data without explicitly

reconstructing the original data. 2) A novel secure aggre-

gation method FedMONN is designed in real applications,

where it can achieve comparable results when compared

with non-federated baseline, without sacrificing any model

performance. 3) FedMONN is more secure than the classic

978-1-7281-7649-9/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCC-SmartCity-DSS50907.2020.00073

2
0
2
0
 I

E
E

E
 2

2
n
d
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 H

ig
h
 P

er
fo

rm
an

ce
 C

o
m

p
u
ti

n
g
 a

n
d
 C

o
m

m
u
n
ic

at
io

n
s

| 9
7
8
-1

-7
2
8
1
-7

6
4
9
-9

/2
0
/$

3
1
.0

0
 ©

2
0
2
0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/H

P
C

C
-S

m
ar

tC
it

y
-D

S
S

5
0
9
0
7
.2

0
2
0
.0

0
0
7
3

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2021 at 06:54:59 UTC from IEEE Xplore. Restrictions apply.

federated averaging and one-time pad aggregation methods,

while much efficient than the federated aggregation using

traditional Paillier HE.

II. MONN BASED FEDERATED AGGREGATION

In Section II, we first introduce the architecture of meta

operation neural network (MONN), and then illustrate the

algorithm of FedMONN. We use the term “meta operation”

to refer six kinds of basic numeric operations, namely

add, subtract, multiply, divide, maximum, and minimum.

It worth noticing that more complicated operations such as

differentiation, integral, power, etc. are also excutable by

combing basic operations. We also introduce the concept of

MONN, which provides a seamless solution for encrypting

raw input and performing meta operations on a ciphertext

space. Based on the secure property of MONN, we propose

FedMONN for secure federated aggregation.

A. Meta Operation Neural Network

To derive a general framework, we define

an encoder-decoder architecture by a tuple

(N,P,Q,N ′,F,G,R,E ,D ,Δ), where:

• F, G, and R are sets, indicating the range of input,

embedding, and output space respectively. For example,

we can set F = R = {0, 1}, G = [−1, 1].
• N , P , Q, and N ′ are positive integers, which represents

the input and output dimension of the encoder and

decoder.

• E and D are series of functions mapping input vectors

from F
N to G

P , and the latent vectors from G
Q to

R
N ′

, respectively.

• Δ is a distortion function defined over R
N ′

and

measures the loss between the target and the decoded

results.

In practice, we usually select multi-layer perception (MLP)

or convolutional neural networks as the mapping functions

for E and D .

The proposed MONN is composed of a shared encoder E
and a meta operation decoder fD̄, and we adopt a two-stage

training scheme to obtain the lossless encoder E ∈ E and

fD̄ ∈ D . At the first stage, MONN focuses on training a

lossless encoder E. With the guide of the raw input, latent

representations generated by E is lossless. At the second

stage, MONN pays attention to optimize meta operation

decoder fD̄ on latent representations with fixed E.

In particular, two stages are described as follows:

• Stage 1: Given a set of data X = {xi}, i = 1, 2, · · · ,m,

in order to get the lossless encryption encoder E, we

need the help of a decoder D ∈ D satisfying:

LA(X) =
m∑

i=1

Δ(xi, D ◦ E(xi)) (1)

where Δ is the distortion function, and LA is the overall

distortion loss, which is restricted to zero. For distortion

function Δ, we simply use binary cross entropy loss

denoted as:

Δ = −
N ′∑

n=1

(ẑnlogzn + (1− ẑn)log(1− zn)) (2)

where z and ẑ are the ground truth and predict vector

respectively, N ‘ equals to the node number in the last

layer of the decoder.

To achieve lossless encryption, the overall distortion

loss LA must converge to 0. Since LA is supervised

by the original input, the input dimension (N) of the

encoder E and output dimension (N ′) of the decoder D
should be the same, which is also suitable to the value

range. Consequently, N = N ′, and F = R. Besides, the

output of the encoder is sent into the decoder, so we

have P = Q. In our experiments, we set F = {0, 1},

G ∈ [−1, 1], N = 64, P = 8N , and use a three layer

MLP for E and D.

In this work, once the lossless encoder E is obtained, D
is not used anymore and must be destroyed for privacy

protection.

• Stage 2: We then move on to train the meta operation

decoder fD̄. In other words, given m′ training data

pairs and each data pair has k input data, then ∀x̄i ∈
X̄, i = 1, 2, · · · ,m′, and x̄i = {x̄1

i , x̄
2
i , · · · , x̄k

i }, the

encrypted vectors E(x̄i) = [E(x̄1
i), E(x̄2

i), · · · , E(x̄k
i)]

are generated with the lossless encoder E obtained in

the first stage. In accordance with the definition of meta
operation, each specified fD̄ should directly working

out the plaintext result with k encrypted inputs:

fD̄(E(x̄i)) = O(x̄i) (3)

where O(·) is a specific meta operation conducted on

plaintext, such as add, multiply, and maximum.

Similar to the encoder-decoder architecture D ◦ E
mentioned in Stage 1, we define a meta operation

decoder fD̄ ∈ D with the pre-trained encoder E
obtained in Stage 1 as fD̄(E(·)), where the input

dimension (Q) of meta operation decoder is k times

as the output dimension (P) of the pre-trained encoder,

namely Q = kP . By concatenating the encrypted

vectors, meta operation decoder fD̄ transforms the

encryption data from G
kP into R

N ′
. As a result, meta

operation decoder can be further defined to find fD̄ ∈ D
that minimize the overall distortion function Δ given

fixed E:

LM (X̄) =
m′∑

i=1

Δ(O(x̄i), fD̄(E(x̄i))) (4)

We also use MLP to simulate meta operation decoder

fD̄. For example, with the specific add meta operation

O(x̄i) =
∑k

j=1 x̄
j
i , i = 1, 2, · · · ,m′ as the optimization

objective, fD̄ is a lossless since it performs meta

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2021 at 06:54:59 UTC from IEEE Xplore. Restrictions apply.

operation on encryption data and outputs exactly the

same result of add meta operation O(·) on plaintext.

Table I: Training Time for Different Methods.

Training Methods
Average Training

Time (s/epoch)

Average Federated

Aggregation Time

(s/epoch)

CNN 14.24 -

FedAvg* 12.28 5.16

FedOTP*

[11]
25.80 18.68

FedMONN* 42.58 35.46

FedHE*

[13]
491.43 484.31

* For federated aggregation methods, we use two participants.

1) Secure Property of MONN: MONN is designed to

protect data privacy, and there are at least three points that

can validate MONN’s secure property. First, even if the

encrypted data pairs E(x̄i) are intercepted by the malicious

attackers during transmission procedure, it is still hard to

reconstruct the raw data since attackers have no information

about the decoder. Second, there is no need to decrypt the

raw input data for the meta operation decoder in MONN. As

a result, MONN is secure to the untrustworthy third party.

Last but not least, meta operation decoder fD̄ preserves a

many-to-one relationship between raw input data pairs and

the output result, which is an irreversible process (e.g. when

x̄1 = {3, 5}, x̄2 = {2, 6}, and O(·) is an add meta operation,

then fD̄(E(x̄1)) = fD̄(E(x̄2)) = 8).
2) Relation to HE: The MONN is in essence a HE

technique, because it allows meta operations on encrypted

data without exposing sensitive data, and can generate the

decryption results which matches the results of the operations

as if they had been performed on the plaintext.
The difference lies in that MONN does not need key

generation, and the output of MONN is a plaintext result

so there is no need to perform the decoding process when

compared with HE method. We compare the performance

of the most popular federated aggregation methods and our

proposed FedMONN in Table I.

B. Secure Aggregation: FedMONN
Suppose k participants try to learn a machine learning

model collaboratively with the help of a server, and com-

munication between participants is forbidden. Formally, we

denote the classic federated averaging aggregation as FedAvg,

and define the weights aggregated by the server as:

w =
1

k

k∑

j=1

wj (5)

where wj is the weights of jth participant. As mentioned

in [13], data privacy still can be unwillingly extracted from

Figure 1: Architecture of FedMONN for federated learning with k
participants.

those parameters by FedAvg.

In this paper, by taking advantages of the secure property

of MONN, we design a secure federated aggregation method

based on MONN, called FedMONN, that ensures no leakage

of information from any participants once a lossless encryp-

tion encoder has been allocated. On the one hand, even if the

encrypted parameters are locally intercepted by the malicious

attackers unfortunately, it is hard to reconstruct the raw data

since attackers have no information about the decoder. On

the other hand, the meta operation decoder on the server

only calculates the whole updated parameters based on the

pre-defined meta operation for aggregation, such as add and

average, but will not reconstruct the individual parameters

since server has only meta operation decoder and no the

decoder for reconstructing raw data. The advantage is that

the model updates for a participant are secure even the server

is not a trustable third party. We define parameters aggregated

by the server using FedMONN as:

w =
1

k
fD̄(E(w̄)) (6)

where w̄ = {w1, w2, · · · , wk}, and fD̄ is an add meta

decoder. MONN is unrelated to federated model, and is an

independent training process. As a result, MONN is trained

on the server firstly. After LA converging to 0, the lossless

encryption encoder E is distributed to every participant while

D is discarded. And after LM equals to 0, meta operation

decoder fD̄ is kept on the server. As shown in Fig. 1, each

participant is equipped with the shared encoder E, and the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2021 at 06:54:59 UTC from IEEE Xplore. Restrictions apply.

server kept the meta operation fD̄.
Then federated learning gets started and participants will

be triggered to train a local model for a specific task with their

own data. During federated training, local updates are going

to be passed to the pre-trained lossless encryption encoder

E in order to encrypt them. Once the server receives the

encrypted vectors from a certain number, the meta operation

decoder fD̄ will compute the aggregated gradient updates

without explicitly recovering parameters of any participant.

The server will synchronously distribute the aggregated meta

operation updates to these participants, and then a new

round of iteration starts for model training on participants.

Algorithm 1 outlines the federated training process including

our proposed FedMONN:

Algorithm 1: FedMONN for Federated Learning.

Input: E, fD̄, w(0), T
Output: w(T)

1 for t = 0 : T do
2 Initialization: wj

(t) = w(t)

3 Local training process:

4 for Pj ∈ {P1, P2, · · · , Pk} do
5 Update local parameters wj

(t) using local data

6 Encrypt local parameters E(wj
(t)), and upload

to server
7 end
8 Federated aggregation process:

9 Update the global parameters w(t) using

Equation (6)

10 The server broadcasts global parameters w(t) back

to each participants

11 Local testing process:

12 for Pj ∈ {P1, P2, · · · , Pk} do
13 Test FedMONN results w(t) using local

testing dataset
14 end
15 t ← t+ 1
16 end

III. EXPERIMENTAL RESULTS

To estimate the performance of our proposed FedMONN,

we simulated participants connecting with a server and

trained a convolutional neural network (CNN) model for

classification on the MNIST [15] and CIFAR-10 dataset [16].

For both federated and non-federated learning methods, we

set the initial learning rate to 0.01, batch size equals to 128,

and use SGD as the optimizer. All the experiments done

on the machine with Intel Xeon Gold 6130 CPU and Tesla

P100.

A. MNIST experiments
We study two ways of partitioning the MNIST data over

participants: 1) IID, where the data is shuffled, and then

partitioned into three participants (Alice, Bob, and Charile),

each receiving 20,000 images, and 2) Non-IID, where Alice,

Bob, and Charile kept characters of types 0-3, 4-6, and 7-9

respectively. The CNN model for MNIST dataset consists of

two 5×5 convolutional layers2, a fully connected layers with

50 units and ReLU activation, a dropout layer with dropout

rate of 20%, and a final softmax output layer.

For the MNIST classification model learning without

federated learning, the accuracy can be as high as 99.40% on

the test set, which will act as a baseline in this experiment.

For the federated learning framework, each participant (Alice,

Bob, and Charile) trained local CNN model and updated

the gradients for aggregation after every epoch.3 But during

the test time, all types of character images were pooled

together. In this way of data splitting, gradient updates of

each participant were indispensable to the aggregated model.

Fig. 2(a) and Fig. 2(b) show the test loss of the participants

and server. For both IID and non-IID data distribution, Fed-

MONN converges much quickly and has better generalization

ability than any participant, which is capable to classify

characters of 0-9. We also list the test accuracy of FedMONN

with IID and non-IID data distribution in Fig. 2(c), showing

FedMONN converges smoothly and quickly with IID data

distribution.

Fig. 2(d) compares the test accuracy of the baseline, and

federated aggregation methods (such as FedAvg, FedHE,

FedOTP4, and FedMONN) under IID data distribution. It

is observed that the accuracy of FedMONN can reach

the comparable accuracy of classical federated aggregation

method–FedAvg, and the gap exists in the converge speed

may be caused by the different batch data sampled during

training time.

Table I shows the average training and federated aggrega-

tion time of the above mentioned four federated aggregation

methods on MNIST IID data. The average training time of

FedAvg is faster than CNN, benefiting by the decentralization

distributed architecture.

Consider factors of model accuracy, training time, and

data privacy, federated learning methods can get satisfied

results when compared with baseline at the cost of the

converge speed. From the aspect of data privacy protection,

FedAvg is hardly related to data privacy protection, while

FedHE, FedOTP, FedMONN are much safer. However,

FedHE achieves the comparable performance at the cost of

lots of training time, while FedOTP requires key agreement

and exchange among participants, which still faces risks of

information leakage to third party. Consequently, FedMONN

is the optimal federated aggregation method among these

2The first with 10 channels, the second with 20 channels, each followed
with 2× 2 max pooling and ReLU activation.

3We can choose whether to encrypt the local gradients before aggregating,
and the encrypt methods, e.g. HE, MONN, one-time pad, and etc..

4FedOTP is shorted for federated aggregation method using one-time
pad [11].

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2021 at 06:54:59 UTC from IEEE Xplore. Restrictions apply.

(a) Test loss for MNIST dataset with IID distribution (b) Test loss for MNIST dataset with non-IID distribution

(c) Test accuracy for MNIST dataset with IID and non-IID distribution (d) Test accuracy for different federated aggregation methods

Figure 2: Performance of the proposed FedMONN. Fig. 2(a) and Fig. 2(b) are the test loss of three participants and a server on MNIST
dataset, with IID and non-IID data distribution. Fig. 2(c) shows the comparison of test accuracy for MNIST IID and non-IID data. Fig. 2(d)
is the test accuracy curves for FedAvg, FedDP, FedHE, FedOTP, and FedMONN.

four counterparts.

B. CIFAR experiments

We also ran experiments on the CIFAR-10 dataset to

further validate FedMONN. CIFAR-10 dataset consists of 10

classes of 32× 32 images with three RGB channels. There are

50,000 training images and 10,000 testing images. The state-

of-the-art approaches for CIFAR-10 dataset have achieved

96.5% [17] accuracy on the testing set. The CNN model

for CIFAR-10 classification consists of two convolutional

layers5, two fully connected layers6, and a final softmax

classification layer. Although the CNN model we use in our

experiment is simply, it is sufficient for our needs. Since

our goal is to evaluate that our proposed FedMONN can

achieve comparable performance as non-federated methods,

not to achieve the best accuracy on this task. The images

are preprocessed as part of the training input pipeline, which

5The first with 32 channels, the second with 64 channels, each followed
with 2× 2 max pooling and ReLU activation.

6The first with 512 units, the second with 32 units, each followed with
ReLU activation.

consists of randomly cropping the images to 24×24, flipping

left-right, and adjusting the contrast.

For the baseline of CIFAR-10 dataset, we train the CNN

model on the full training set, reaching a 90.21% testing accu-

racy after 300 epochs. It is worth noting that participant can

join and leave flexibly under federated learning scenario, so

we explored the influence of different number of participants

in two settings.7 One case is to participate the training images

into 2, 10, 20, and 50 participants, each participant containing

5,000, 1,000, and 2,000 images respectively. In Fig. 3(a),

FedMONN with 2 participants can reach comparable accuracy

with the baseline counterpart, and FedMONN needs more

epochs to converge as the number of participants increased.

The other case is that the number of participant varies

from 2 to 50, and each participant holds the same training

images, which we set 1,000 in our experiments. Experimental

results are listed in Fig. 3(b), indicating that with the number

7As there isn’t a natural participant-level partitioning of this data, we
only considered the IID setting.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2021 at 06:54:59 UTC from IEEE Xplore. Restrictions apply.

(a) Test accuracy with different number of participants (b) Test accuracy with each participant holds the same number of training
samples

Figure 3: Performance of FedMONN with different number of participants.

of participants increasing8, FedMONN can achieve better

performance, and similar phenomena has also been observed

in the centralized non-federated training methods.

IV. CONCLUSION

In this paper, we propose MONN and apply it to federated

learning for secure aggregation. MONN is actually a general

neural network consisting of an encoder and a meta decoder,

which can perform some basic arithmetic operations, such

as add, subtract, multiply, divide, maximum, and minimum.

Consequently, MONN provides possibilities of more flexi-

ble and diverse operation combinations. In MONN based

federated aggregation (FedMONN), model updates in each

participant are first locally encrypted with the encoder, then

the encrypted vectors are transmitted to the third party server,

and finally model updates are aggregated with the meta

operation decoder on the server. Since the encrypted vectors

cannot be decrypted by malicious attackers and the third

party server, data privacy is well preserved and thus more

secure.

REFERENCES

[1] H. Li, D. Meng, H. Wang, and X. Li, “Knowledge federation: A
unified and hierarchical privacy-preserving AI framework,” in IEEE
International Conference on Knowledge Graph (ICKG), 2020, pp.
84–91.

[2] X. Zheng, Z. Cai, and Y. Li, “Data linkage in smart internet of
things systems: a consideration from a privacy perspective,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 55–61, 2018.

[3] Z. Cai, Z. He, X. Guan, and Y. Li, “Collective data-sanitization for
preventing sensitive information inference attacks in social networks,”
IEEE Transactions on Dependable and Secure Computing, vol. 15,
no. 4, pp. 577–590, 2018.

[4] J. Zhou, J. Sun, P. Cong, Z. Liu, X. Zhou, T. Wei, and S. Hu, “Security-
critical energy-aware task scheduling for heterogeneous real-time
MPSoCs in IoT,” IEEE Transactions on Services Computing, vol. 13,
no. 4, pp. 745–758, 2020.

8The number of training samples involved in the training phrase is also
increased.

[5] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
ACM SIGSAC conference on computer and communications security.
ACM, 2015, pp. 1310–1321.

[6] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[7] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi,
“Beyond inferring class representatives: user-level privacy leakage
from federated learning,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 2512–2520.

[8] C. Ma, J. Li, M. Ding, H. H. Yang, F. Shu, T. Q. Quek, and H. V. Poor,
“On safeguarding privacy and security in the framework of federated
learning,” IEEE Network, 2020.

[9] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[10] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farhad, S. Jin, T. Q.
Quek, and H. V. Poor, “Federated learning with differential privacy:
algorithms and performance analysis,” arXiv, pp. arXiv–1911, 2019.

[11] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1175–1191.

[12] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 10, no. 2, p. 12, 2019.

[13] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE Trans-
actions on Information Forensics and Security, vol. 13, no. 5, pp.
1333–1345, 2017.

[14] H. Li and T. Han, “An end-to-end encrypted neural network for gradient
updates transmission in federated learning,” in Data Compression
Conference (DCC), 2019, pp. 589–589.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[16] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[17] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071,
2014.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2021 at 06:54:59 UTC from IEEE Xplore. Restrictions apply.

